MIDWEST REPRESENTATION STABILITY RESEARCH MEETING PROBLEM SESSION

1. Rohit Nagpal's Question

Background. Let $\operatorname{St}_{n}(\mathbb{Z})$ denote the free abelian group on symbols: $\left[v_{1}, \ldots, v_{n}\right]$ with v_{1}, \ldots, v_{n} a basis of \mathbb{Z}^{n} subject to the relations:
i) $\left[v_{1}, \ldots, v_{n}\right]=\operatorname{sgn}(\sigma)\left[v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right]$,
ii) $\left[v_{1}, \ldots, v_{n}\right]=\left[-v_{1}, \ldots, v_{n}\right]$,
iii) $\left[v_{1}, v_{2}, \ldots, v_{n}\right]+\left[v_{1}+v_{2}, v_{1}, \ldots, v_{n}\right]=\left[v_{1}+v_{2}, v_{2}, \ldots, v_{n}\right]$.

Questions.

- Can we find an explicit subset of this generating set which is a basis?
- Can we find such a basis which is closed under multiplication by unit upper-triangular matrices?

Comments.

- This is a possible approach to proving the Church-Farb-Putman vanishing conjectures for $H^{*}\left(\mathrm{SL}_{n}(\mathbb{Z})\right)$.
- The analogous statement with \mathbb{Z} replaced with a field is known and is part of the Solomon-Tits theorem.

2. Graham White's Question

Background. In the Kneser graph, the largest clique has size $\left\lfloor\frac{n}{2}\right\rfloor$ and the largest independent set has size $n-1$. The Kneser graph is a finitely generated FI-graph.

Questions.

- For a finitely generated FI-graph, how do the clique size and largest independent set grow?
- Can one make similar statements about other invariants similar to clique size or size of a largest independent set?
- Is there a description of the set of subgraphs which realize the largest clique or independent set that has an eventually uniform description in the spirit of FI-modules?

3. Nate Harman's Question

Background. For n sufficiently large, $\mathrm{GL}_{n}(Z)$ and $\operatorname{Aut}\left(F_{n}\right)$ have property (T). Let VIC($\left.\mathbb{Z}\right)$ be the category of finite rank free \mathbb{Z}-modules with morphisms split linear injections with choice of complement. Let $U \operatorname{Aut}(F)$ denote the analogue for $\operatorname{Aut}\left(F_{n}\right)$. That is, $U \operatorname{Aut}(F)$ is the category of finite rank free groups with morphisms split injective group homomorphisms and choice of complement.

Questions.

- Can one formulate and then prove property (T) for the categories $\operatorname{VIC}(\mathbb{Z})$ and $U \operatorname{Aut}(F)$?
- Is the correct notion of property (T) for these types of categories a stable notion? That is, should we only care about tails of $\operatorname{VIC}(\mathbb{Z})$-modules and $U \operatorname{Aut}(F)$-modules when formulating an analogue property (T) ?

4. Benson Farb's Question

Background. Let V be a finitely generated FI-module. Then there are character polynomials

$$
\chi_{V_{n}}(\sigma)=P\left(x_{1}, \ldots, x_{r}\right)
$$

that compute characters in the stable range.

Questions.

- Can we compute these in examples such as for V the cohomology of ordered configuration spaces of surfaces?
- Is there an understandable space with an action of S_{∞} that encodes the representation stable portion of the cohomology of a family of spaces exhibiting representation stability?

5. Jordan Ellenberg's Question

Background. Let G be a finite group. Let $V_{n}=\mathbb{Z}\left[G^{n}\right]$. There is an action of the braid group on V_{n} given by $\sigma_{j}\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1}, \ldots g_{j-1}, g_{j} g_{j+1} g_{j}^{-1}, g_{j}, g_{j+2}, \ldots, g_{n}\right)$. The homology groups $H_{i}\left(B r_{n} ; V_{n}\right)$ agree with those of a certain moduli space of branched covers with monodromy in G (a.k.a a Hurwitz space). For G replaced with certain conjugacy classes, Ellenberg-Venkatesh-Westerland proved that $H_{i}\left(B r_{n} ; V_{n}\right)$ stabilizes as n tends to infinity. If you replace the braid group $B r_{n}$ with pure braid group, then $\left\{H_{i}\left(P B r_{n} ; V_{n}\right)\right\}_{n}$ has the structure of an FI-module. In work in progress, Ellenberg has likely shown that $\left\{H_{i}\left(P B r_{n} ; V_{n}\right)\right\}_{n}$ is presented in finite degree.

Questions.

- Can one prove that the presentation degree of $\left\{H_{i}\left(P B r_{n} ; V_{n}\right)\right\}_{n}$ is bounded by a linear function in i ?

Comments.

- An affirmative answer to this question would likely have number-theoretic applications in a similar spirit to those of the original Ellenberg-Venkatesh-Westerland project.
- The coefficient system V_{n} grows exponentially fast so it is not "polynomial."

6. John Wiltshire-Gordon's Question

Background. Let $\operatorname{Conf}_{n}(X)$ denote the configuration space of n ordered points in X. Let Y denote the cone on 3 points. Let Z denote the 1 -skeleton of the 3 -simplex. We have $\operatorname{Conf} f_{2}\left(\mathbb{R}^{3}\right) \simeq S^{2}$, $\operatorname{Conf}_{2}(Y) \simeq S^{1}, \operatorname{Conf}_{2}(Z) \simeq S^{2}$, and $\operatorname{Conf}_{2}(Y \times Y) \simeq S^{3}$. These homotopy equivalences are equivariant with respect to the antipodal action on S^{n} and the usual S_{2} action on $C o n f_{2}(X)$ permuting the two points.

Question.

- Can we use these equivalences to find obstructions to embedding spaces into other spaces?

7. Wee Liang Gan Question

Background. Consider a short exact sequence of Fl-groups:

$$
1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1 .
$$

The group homology $H_{i}(A), H_{i}(B)$, and $H_{i}(C)$ will have the structure of FI-modules.

Question.

- If $H_{i}(B)$ and $H_{i}(C)$ are presented in finite degree of all i, is $H_{i}(A)$ presented in finite degree?

8. Jeremy Miller's Question

Background. Let $\mathrm{St}_{n}(K)$ denote the Steinberg module of a field K. Let \mathcal{O} denote the ring of integers in K. Let $\left[L_{1}, \ldots, L_{n}\right]$ denote the apartment class (a.k.a. modular symbol) associated with a direct sum decomposition of K^{n} into lines. For \mathcal{O} Euclidean, the Ash-Rudolph theorem says that $\mathrm{St}_{n}(K)$ is generated by apartment classes $\left[L_{1}, \ldots, L_{n}\right]$ with:

$$
\mathcal{O}^{n}=\left(\mathcal{O}^{n} \cap L_{1}\right) \oplus \ldots \oplus\left(\mathcal{O}^{n} \cap L_{n}\right) .
$$

Questions.

- For \mathcal{O} not necessarily Euclidean, is $\mathrm{St}_{2 m}(K)$ generated by apartment classes $\left[L_{1}, \ldots, L_{2 m}\right]$ with:

$$
\mathcal{O}^{2 m}=\left(\mathcal{O}^{2 m} \cap\left(L_{1} \oplus L_{2}\right)\right) \oplus \ldots \oplus\left(\mathcal{O}^{2 m} \cap\left(L_{2 m-1} \oplus L_{2 m}\right)\right) ?
$$

- What is the correct generalization for m odd?

Comments.

- This is equivalent to the statement that

$$
\operatorname{Ind}_{\left(\mathrm{GL}_{2}(\mathcal{O})\right)^{m}}^{\mathrm{GL}_{2 m}(\mathcal{O})} \mathrm{St}_{2}(K) \rightarrow \operatorname{St}_{2 m}(K)
$$

is surjective.

- This would let you compute the top rational cohomology group of quadratic imaginary number rings which are PIDs but not Euclidean.

9. Eric Ramos's Question

Background. Let $n>k$. Let $X_{n, k}=\left\{\left(\ell_{1}, \ldots, \ell_{n}\right) \mid \sum \ell_{i}=\mathbb{C}^{k}\right\} \subseteq \mathbb{C} P^{k-1}$. There is a stabilizabtion map $X_{n, k} \rightarrow X_{n+1, k+1}$ given by

$$
\left(\ell_{1}, \ldots \ell_{n}\right) \mapsto\left(\ell_{1}, \ldots \ell_{n}, \operatorname{span}\left(e_{k+1}\right)\right) .
$$

This map and the natural symmetric group actions give the sequence $k \mapsto X_{k+i, k}$ the structure of an FI-space. It is known that the sequence $\left\{H_{j}\left(X_{k+i, k}\right)\right\}_{k}$ exhibits multiplicity stability.

Questions.

- Can we give an easier proof of this multiplicity stability using FI-modules?
- Is FI the correct category to consider?

10. Peter Patzt's Question

Background. Bykovskii constructed a presentation of $\operatorname{St}_{n}(\mathbb{Z})$ by $\mathbb{Z}\left[\mathrm{GL}_{n}(\mathbb{Z})\right]$-modules which are flat after inverting finitely many primes. See Rohit Nagpal's question for a description.

Question.

- Can one find a partial resolution of $\operatorname{St}_{n}(\mathbb{Z})$ in the spirit of Bykovskii?

Comment.

- Church-Putman used Bykovskii's presentation to show vanishing of the codimension 1 homology of $\mathrm{SL}_{n}(\mathbb{Z})$. A longer partial resolution could be used to show vanishing of higher codimension cohomology.

11. Alexander Kupers' Question

Background. For a finite set I, let $\operatorname{Emb}(I, M)$ be the space of embeddings of I into M. Let ToHoFib $I \subset\{1, \ldots, k\} \operatorname{Emb}(I, M)$ denote the total homotopy fiber. For example, for $k=2$, this is

$$
\operatorname{hofib}\left(\operatorname{hofib}\left(P C o n f_{2}(M) \rightarrow M\right) \rightarrow \operatorname{hofib}(M \rightarrow *)\right)
$$

Question.

- Can we compute ToHoFib $_{I \subset\{1, \ldots, k\}} \operatorname{Emb}(I, M)$?

Comment.

- These spaces appear in embedding calculus towers.

