
MIDWEST REPRESENTATION STABILITY RESEARCH MEETING

PROBLEM SESSION

1. Rohit Nagpal’s Question

Background. Let Stn(Z) denote the free abelian group on symbols: [v1, . . . , vn] with v1, . . . , vn a

basis of Zn subject to the relations:

i) [v1, . . . , vn] = sgn(σ)[vσ(1), . . . , vσ(n)],

ii) [v1, . . . , vn] = [−v1, . . . , vn],

iii) [v1, v2, . . . , vn] + [v1 + v2, v1, . . . , vn] = [v1 + v2, v2, . . . , vn].

Questions.

· Can we find an explicit subset of this generating set which is a basis?

· Can we find such a basis which is closed under multiplication by unit upper-triangular matrices?

Comments.

· This is a possible approach to proving the Church-Farb-Putman vanishing conjectures for

H∗(SLn(Z)).

· The analogous statement with Z replaced with a field is known and is part of the Solomon-Tits

theorem.

2. Graham White’s Question

Background. In the Kneser graph, the largest clique has size bn2 c and the largest independent set has

size n− 1. The Kneser graph is a finitely generated FI-graph.

Questions.

· For a finitely generated FI-graph, how do the clique size and largest independent set grow?

· Can one make similar statements about other invariants similar to clique size or size of a largest

independent set?

· Is there a description of the set of subgraphs which realize the largest clique or independent set

that has an eventually uniform description in the spirit of FI-modules?

3. Nate Harman’s Question

Background. For n sufficiently large, GLn(Z) and Aut(Fn) have property (T ). Let VIC(Z) be the

category of finite rank free Z-modules with morphisms split linear injections with choice of complement.

Let U Aut(F ) denote the analogue for Aut(Fn). That is, U Aut(F ) is the category of finite rank free

groups with morphisms split injective group homomorphisms and choice of complement.
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Questions.

· Can one formulate and then prove property (T ) for the categories VIC(Z) and U Aut(F )?

· Is the correct notion of property (T ) for these types of categories a stable notion? That is,

should we only care about tails of VIC(Z)-modules and U Aut(F )-modules when formulating

an analogue property (T )?

4. Benson Farb’s Question

Background. Let V be a finitely generated FI-module. Then there are character polynomials

χVn(σ) = P (x1, . . . , xr)

that compute characters in the stable range.

Questions.

· Can we compute these in examples such as for V the cohomology of ordered configuration

spaces of surfaces?

· Is there an understandable space with an action of S∞ that encodes the representation stable

portion of the cohomology of a family of spaces exhibiting representation stability?

5. Jordan Ellenberg’s Question

Background. Let G be a finite group. Let Vn = Z[Gn]. There is an action of the braid group on Vn

given by σj(g1, . . . , gn) = (g1, . . . gj−1, gjgj+1g
−1
j , gj , gj+2, . . . , gn). The homology groups Hi(Brn;Vn)

agree with those of a certain moduli space of branched covers with monodromy in G (a.k.a a Hurwitz

space). For G replaced with certain conjugacy classes, Ellenberg–Venkatesh–Westerland proved that

Hi(Brn;Vn) stabilizes as n tends to infinity. If you replace the braid group Brn with pure braid group,

then {Hi(PBrn;Vn)}n has the structure of an FI-module. In work in progress, Ellenberg has likely

shown that {Hi(PBrn;Vn)}n is presented in finite degree.

Questions.

· Can one prove that the presentation degree of {Hi(PBrn;Vn)}n is bounded by a linear function

in i?

Comments.

· An affirmative answer to this question would likely have number-theoretic applications in a

similar spirit to those of the original Ellenberg–Venkatesh–Westerland project.

· The coefficient system Vn grows exponentially fast so it is not “polynomial.”

6. John Wiltshire-Gordon’s Question

Background. Let Confn(X) denote the configuration space of n ordered points in X. Let Y denote

the cone on 3 points. Let Z denote the 1-skeleton of the 3-simplex. We have Conf2(R3) ' S2,

Conf2(Y ) ' S1, Conf2(Z) ' S2, and Conf2(Y × Y ) ' S3. These homotopy equivalences are

equivariant with respect to the antipodal action on Sn and the usual S2 action on Conf2(X) permuting

the two points.
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Question.

· Can we use these equivalences to find obstructions to embedding spaces into other spaces?

7. Wee Liang Gan Question

Background. Consider a short exact sequence of FI-groups:

1→ A→ B → C → 1.

The group homology Hi(A), Hi(B), and Hi(C) will have the structure of FI-modules.

Question.

· If Hi(B) and Hi(C) are presented in finite degree of all i, is Hi(A) presented in finite degree?

8. Jeremy Miller’s Question

Background. Let Stn(K) denote the Steinberg module of a field K. Let O denote the ring of integers

in K. Let [L1, . . . , Ln] denote the apartment class (a.k.a. modular symbol) associated with a direct

sum decomposition of Kn into lines. For O Euclidean, the Ash-Rudolph theorem says that Stn(K) is

generated by apartment classes [L1, . . . , Ln] with:

On = (On ∩ L1)⊕ . . .⊕ (On ∩ Ln) .

Questions.

· For O not necessarily Euclidean, is St2m(K) generated by apartment classes [L1, . . . , L2m] with:

O2m =
(
O2m ∩ (L1 ⊕ L2)

)
⊕ . . .⊕

(
O2m ∩ (L2m−1 ⊕ L2m)

)
?

· What is the correct generalization for m odd?

Comments.

· This is equivalent to the statement that

Ind
GL2m(O)
(GL2(O))m St2(K)→ St2m(K)

is surjective.

· This would let you compute the top rational cohomology group of quadratic imaginary number

rings which are PIDs but not Euclidean.

9. Eric Ramos’s Question

Background. Let n > k. Let Xn,k = {(`1, . . . , `n)|
∑
`i = Ck} ⊆ CP k−1. There is a stabilizabtion

map Xn,k → Xn+1,k+1 given by

(`1, . . . `n) 7→ (`1, . . . `n, span(ek+1)).

This map and the natural symmetric group actions give the sequence k 7→ Xk+i,k the structure of an

FI-space. It is known that the sequence {Hj(Xk+i,k)}k exhibits multiplicity stability.

Questions.

· Can we give an easier proof of this multiplicity stability using FI-modules?

· Is FI the correct category to consider?
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10. Peter Patzt’s Question

Background. Bykovskii constructed a presentation of Stn(Z) by Z[GLn(Z)]-modules which are flat

after inverting finitely many primes. See Rohit Nagpal’s question for a description.

Question.

· Can one find a partial resolution of Stn(Z) in the spirit of Bykovskii?

Comment.

· Church–Putman used Bykovskii’s presentation to show vanishing of the codimension 1 homology

of SLn(Z). A longer partial resolution could be used to show vanishing of higher codimension

cohomology.

11. Alexander Kupers’ Question

Background. For a finite set I, let Emb(I,M) be the space of embeddings of I into M . Let

ToHoFibI⊂{1,...,k}Emb(I,M) denote the total homotopy fiber. For example, for k = 2, this is

hofib
(
hofib

(
PConf2(M)→M

)
→ hofib

(
M → ∗

))
.

Question.

· Can we compute ToHoFibI⊂{1,...,k}Emb(I,M)?

Comment.

· These spaces appear in embedding calculus towers.
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